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Kinetics of Emulsion Polymerization 

J. T. O'TOOLE, School of Engineering and Applied Science, Princeton 
University, Princeton, New Jersey 

synopsis 

The quantitatiye theory of free radical mechanisms in emulsion polymerizations is re- 
examined. It is .suggested that existing descriptions are not entirely consistent with 
physically realizable situations. The proposed modifications result in a closer reaem- 
blance to homogeneous systems. Explicit expressions for the distribution of radicals are 
also given. The importance of interphase transfer is emphasized. 

A kinetic description of emulsion polymerizations must take into account 
the fact that the termination step involves a finite and usually quite small 
number of radical pairs in each latex particle. As a consequence, the usual 
rate equations in terms of macroscopic variables must be replaced by a 
probabilistic analysis. Such analyses have been provided by Stockmayer' 
and by Haward.2 It is the purpose of this communication to extend the 
theory by presenting explicit expressions for the distributions of radical 
populations and to demonstrate that the solutions obtained by these 
authors, although mathematically correct, are physically unacceptable for 
small but finite rates of radical desorption. 

The problem at hand is to predict the stationary distribution of growing 
molecules in a latex particle resulting from a zero-order absorption from 
the aqueous phase or intraparticle initiation, a first-order desorption or 
chain-stopping transfer, and a second-order termination reaction. For 
systems in which radicals appear singly one can follow Stockmayer and 
equate the rate of change of the probability of n-fold occupancy Pn to the 
net contribution of the three mechanisms. In  the absence of time de- 
pendence a simpler, but equivalent, procedure is to set equal to zero the 
net flux of system points between states n and n + 1. The resulting recur- 
rence relation is 

kaPn = [Ica + (n/vk,) I(n + 1)Pn+1 + ( W v )  (n  + 1 )  (n  + 2)P,+z (1) 

where the k's are the rate constants, in molecular units, for the three 
mechanisms listed in the same order above and u represents the volume of 
the particle. The appearance of a second-order instead of third-order dif- 
ference equation is analogous to the integration of the diffusion equation 
when applied to a steady state, onedimensional problem. 

Whatever the starting point our objective is mast easily attained in 
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m =  o 

Fig. 1. Average radical population: (-) this work; (--) data of Stockmayer.1 

terms of a generating function which satisfies a second-order differential 
equation having the general solution: 

in which m = kdv/k,, a = 2(2kav/kt)"', and I denotes the modified Bessel 
function of the f is t  kind. 

For integral values of n the two solutions are identical and no ambiguity 
arises. If desorption predominates, that is m > 1, the first solution di- 
verges at s = - 1, implying the existence of negative p,. As a result of 
arguments such as these Stockmayer set A = 0 in this region and ap- 
parently by means of similar reasoning concluded that B = 0 for 0 < m < 1. 
That the latter result is not the case can be demonstrated by inspection 
of the explicit formulae for the probabilities. Differentiation of the expres- 
sion (2) and application of well known relations between the Bessel func- 
tiom3 lead to the inversion: 

P, = (~'//s)"'~(l/n!) [A11-m-n(~2-"a) + B1,4+,(~2-~'*) ] (3) 

The acceptable distribution can be determined by examination of the 
asymptotic behavior for large n, namely: 
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P ,  - ( ~ ~ / 8 ) ( ~ - ~ ) ~ ~ ( l / n ! ) (  (A/?r)(n + m - 2)!  sin (n + m - 1) 

+ [B(az /8)m-1+~/(m - 1 + n)!]] (4) 

The first term is clearly the dominant one in this limit and inasmuch as it 
alternates in sign must be rejected entirely. The normalized distribution 
valid for all values of m is thus given by 

(5 )  p = a m p - i - 3 n )  / 2 Im-l+,(~2 - '") /n!~m-l(~)  
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fig. 2. Relative molecular weight: (-) this work; (- -) data of Stockmayer;' (- - 
-) data of Haward.2 

In order to evaluate the molecular weight of the polymer and the con- 
version of monomer it is necessary to know the average populations of 
singlets and radical pairs. These values can be obtained from the mo- 
ments of the distribution as 

n = dP/bsl,=1 = uIm(u)/41m-1(a) 

(1/2)n(n - 1) = (1/2)d2P/ds21,=1 = UzI,+i(a)/321,-i(U) (6) 

In Figures 1 and 2 are plotted ft and the ratio aft/4n(n - 1) as functions 
of the parameter a. The second curve is effectively that of molecular 
weight against square root of initiation rate. 
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For many applications both a and m take on values much less than one. 
The following approximations then become valid : 

f i  - ka / (k i  + 2ka) 

n(n - 1 )  - kam/k, (7) 
Should the loss of radicals to the aqueous phase be negligible, R = 1/2, the 
limiting case originally treated by Smith and E ~ a r t . ~  

In a second problem considered by Haward the radicals are created in 
pairs within the emulsified droplets and the first order loss constant is 
negligible. A solution is readily obtained according to which only even 
numbers of active centers per particle are possible. One may justifiably 
entertain doubts about such a literal interpretation of the model. In fact, 
Haward suggests a number of mechanisms which if operative to the slight- 
est degree could transform this stochastic process on the even integers to an 
analogous one for which n = 1,3 ,  etc. It might even appear plausible that 
even and odd radical populations would be equally probable. Fortunately 
it is not necessary to rely on such intuitive arguments. The stable solution 
may be found by allowing for a finite but small value of k d  and thus includ- 
ing the Haward model within the framework of a more general treatment. 

Accordingly we will look for the distribution which satisfies the stationary 
relation: 

a2(Pn + P,,-d/16 = (m + n)(n + 1)Pn+1+ (n + l > ( n  + 2)Pn+2 (8) 
the variables having the same significance as before. The additional 
term involving particles containing n - 1 radicals refers to the initiation 
process which transforms these states to those of occupancy n + 1 .  The 
generating function defined by eq. (2) must satisfy the differential equation: 

a2P/16 = [m/ ( l  + s)](bP/bs) + (b2P/bs2) (9) 

The general solution is easily obtained in terms of Bessel functions as 

P = ( 1  S)('-~)'2(A1(1--m)/2[a(l + s ) /4 ]  + BI(rn-l)/z[U(I S ) / ' I ] f  (10) 

Proceeding as outlined above the coefficients are found to  be 
1 l/%n-d 

n! i=o 
1/2(n-r) I 1 m/2 I P, = - C ( 2 )( - 7 )Z.(-2) ' (~/4)"-' . .  

[AIlh(l-rn)-t-r (a/4) + B11+,-112(1-rn)(a/4) 1 ( 1  1 )  

where @) denotes the binomial factor and r = 0 for even values of n; r = 
1 for odd ones. Investigation of the behavior of this expression for large 
n reveals that the P ,  will remain bounded only if A = 0. 

The first and second moments are readily obtained upon differentiation 
of the normalized solution. The average radical populations derived in 
this manner are 

12 = a1(rn+l)/~(a/2)/U(rn-1 1/22 (a/2> 

n(n - 1 )  = cu2/16) - (m%/2) (12) 
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The similarity to the expressions (6) is noteworthy. Only a reinterpreta- 
tion of the kinetic parameters is required to obtain the proper vaIue of rt 
from Figure 1. 

The 
distribution then adopts the particularly simple form 

Finally the case of negligible first-order processes is considered. 

P, = (a/4)" [ea14 + (- l)"e-"'4]/2n! cosh (a/2) (13) 

with 

f i  = (a/4) tanh (a/2) 

n(n - 1) = a2/16 

As was anticipated, the polymerization rate, proportional to a, lies between 
that predicted by Haward and the value for reaction in bulk. The average 
number of radical pairs associated with these models is independent of the 
extent of dispersed phase subdivision. The molecular weight, however, 
should decrease with increasing dispersion. 

The selection of the appropriate model for a particular system is not 
always an obvious one. Examples for which radicals are produced in pairs 
within the hydrocarbon phase yet appear singly in the kinetic scheme are 
discussed by van der Hoff .5 It seems plausible that such systems could be 
analyzed by means of a linear combination of the two models treated above. 
This can be accomplished simply by adding eqs. (1) and (8) weighted by the 
factors 1 - b2 and b2, respectively. The quantity b2 thus represents the 
fraction of free radicals which are initiated in pairs. The well behaved 
generating function can be obtained in terms of confluent hypergeometric 
functions as3 

p = ea(*-1)/4@(-~*m* 1 
1 - [(ab/2)(1 + s>I/@(-c;m; - ab) (14) 

where 

c = a(1 - b2) /4b  - (m/2) 

Extraction of useful information from this solution would, in general, 
be a formidable task. There are however two interesting cases for which 
simplification prevails. First, it should be possible to arrive at the Haward 
model by setting m = 0 and then allowing b2 to approach unity. Somewhat 
surprisingly this procedure predicts an average value for the radical popula- 
tion which is greater than that for reaction in bulk and in fact resembles the 
Smith-Ewart model more nearly than any pertaining to intraparticle initia- 
tion. I t is  

R = (a/4) coth (a/2) (15) 

Further inspection reveals that the physical picture, that of a complete 
absence of exchange of radicals with the continuous phase, simply does not 
define a mathematically unique system. Rather, the order in which the 
limits are taken is a determining factor. 
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Fig. 3. Average radical population; (-) this work; (----) data of Haward.4 

The second possibility for an explicit solution occurs when the parameter 
c takes on integral values and the 9 becomes associated Laguerre poly- 
nomials Lc("-')[(ub/2)(l + s)]. Of particular importance is the set of 
solutions for which c = 0. The radicals are then allotted according to the 
Poisson distribution : 

P, = e-"(?i>"/n! 

with 

?i = ab/4 = (1/4)(m2 + u~)~'' - (744) 
Reference to the kinetic significance of these parameters indicates that this 
case represents that of radical conservation in the continuous phase. The 
rate of molecular desorption is exactly balanced by that of re-entry. It 
would seem that this statement, together with the limit m N 0, best ex- 
presses in a definitive manner the model proposed by Haward. Applica- 
tion of this limit to the expression (16) yields a result which is indistinguish- 
able from that for the corresponding homogeneous system: 

?i = 4 4  

n(n - 1) = ?iz 

The rates of polymerization as predicted on the basis of the various inter- 
pretations of the intraparticle initiation model are presented in Figure 3. 

In  conclusion, two points should be emphasized: (1) dispersion of the 
reaction sites by means of emulsification can be expected to affect the 
macroscopic kinetics only if the continuous phase plays an active role; 
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(2) continued reduction of particle size will eventually have a deleterious 
effect on the conversion although augmented molecular weight may result. 
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Rbum6 
La th6orie quantitative des m6canismes par radicaux libres dans les polym6risations 

en 6mulsion a 6th r66tudi6e. On montre que les descriptions d6jA existantes ne sont pas 
entihrement en accord avec les situations physiques r6alisables. Lea modifications pro- 
p o s h  fournissent une ressemblance plus Btroite avec les systAmes homogbnes. On 
donne aussi des expressions explicites pour la distribution des radicaux. On met l’accent 
sur l’importance du transfert ii l’interphase. 

Zusammenfassung 
Die quantitative Theorie des radikalischen Mechanismus bei der Emulsionspolymerisa- 

tion wird iiberpriift. Die bekannten Annahmen scheinen mit physikalisch realisierbaren 
Gegebenheiten nicht vollig vereinbar zu sein. Die vorgeschlagenen Anderungen fiihren 
zu einer engeren Verwandtschaft zu homogenen Systemen. Es werden explizite Aus- 
driicke fur die Verteilung der Radikale angegeben. Die Wichtigkeit einer Interphasen- 
iibertragung wird betont. 
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